2006年度上智大学シラバス

2006/05/27更新
◆解析学特別講義Ⅰ - (後)
古谷 賢朗
○科目サブタイトル
ベキ零 Lie 群上の熱核の構成
○講義概要
Since the heat kernel of the sub-Laplacian on Heisenberg group was constructed in an explicit integral form by A. Hulanicki, we have several ways to construct the heat kernel for the sub-Laplacian and the Laplacian on 2-step nilpotent Lie groups. In this course we explain a method effectively employed by Beals-Gaveau-Greiner, so called the complex Hamilton-Jacobi theory, and illustrate the construction of the heat kernel for general 2-step cases.
Main contents of the course will be the discussion on the solution of the generalized Hamilton-Jacobi equation and a quantity similar to van Vleck determinant and their roles in the integral expression of the heat kernel.
We expect this method will work also for 3-step cases to construct the heat kernel together with the theory of elliptic functions. So as an example, we consider the solution of the generalized Hamilton-Jacobi equation for the lowest dimensional 3-step nilpotent Lie group (Engel group).
If we have an enough time, we discuss a hierarchy of heat kernels for the three dimensional Heisenberg group and Heisenberg manifolds as a simple example.
○評価方法
出席状況(60%)、レポート(40%)
○参考書
Kenro Furutani : Heat Kernels of the sub-Laplacian and the Laplacian on Nilpotent Lie Groups
/最初の講義で配ります。
R. Beals, B. Gaveau and P. Greiner "The Green Function of Model Step two
Hypoelliptic Operators and the Analysis of Certain Tangential
Cauchy Riemann Complexes, Advances in Mathematics
Vol.121(1996), 288--345."
Academic press 1996年 Volume 121
○他学部・他学科生の受講

○授業計画
1Fourier変換とEuclid空間上の熱核、Riemann多様体上の熱方程式
2ベキ零リー群の基本的事項のまとめとsub-Riemann構造 I
3ベキ零リー群の基本的事項のまとめとsub-Riemann構造 II
4自己共役作用素のスペクトル分解、熱核、Green核、Laplacianのスペクトル分解と熱核 I
5Laplacianのスペクトル分解と熱核 II
6ベキ零リー群上の熱方程式と輸送方程式 I
7ベキ零リー群上の熱方程式と輸送方程式 II
8Hamilton系とcomplex Hamilton-Jacobi理論、van-Vleck determinant
92ステップベキ零リー群の熱核の積分表示と測地線
10コンパクトベキ零多様体上の熱核とトレース
11熱核とスペクトル不変量
12Engel群上の熱方程式
13Engel群上のHamilton系と楕円関数

  

Copyright (C) 2006 Sophia University
By:上智大学 学事センター